EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Effective content moderation systems require explicit classification criteria, yet online communities like subreddits often operate with diverse, implicit standards. This work introduces a novel approach to identify and extract these implicit criteria from historical moderation data using an interpretable architecture. We represent moderation criteria as score tables of lexical expressions associated with content removal, enabling systematic comparison across different communities.Our experiments demonstrate that these extracted lexical patterns effectively replicate the performance of neural moderation models while providing transparent insights into decision-making processes. The resulting criteria matrix reveals significant variations in how seemingly shared norms are actually enforced, uncovering previously undocumented moderation patterns including community-specific tolerances for language, features for topical restrictions, and underlying subcategories of the toxic speech classification.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Generative Annotation for ASR Named Entity Correction
poster

Generative Annotation for ASR Named Entity Correction

EMNLP 2025

+8
Xiaoyu Chen and 10 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved