EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Connecting audio encoders with large language models (LLMs) allows the LLM to perform various audio understanding tasks, such as automatic speech recognition (ASR) and audio captioning (AC). Most research focuses on training an adapter layer to generate a unified audio feature for the LLM. However, different tasks may require distinct features that emphasize either semantic or acoustic aspects, making task-specific audio features more desirable. In this paper, we propose Prompt-aware Mixture (PaM) to enhance the Speech LLM that uses multiple audio encoders. Our approach involves using different experts to extract different features based on the prompt that indicates different tasks. Experiments demonstrate that with PaM, only one Speech LLM surpasses the best performances achieved by all single-encoder Speech LLMs on ASR, speaker number verification, and AC tasks. PaM also outperforms other feature fusion baselines, such as concatenation and averaging.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

LLM-Driven Completeness and Consistency Evaluation for Cultural Heritage Data Augmentation in Cross-Modal Retrieval
poster

LLM-Driven Completeness and Consistency Evaluation for Cultural Heritage Data Augmentation in Cross-Modal Retrieval

EMNLP 2025

+5
Junyi Guo and 7 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved