EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

The performance of large language models (LLMs) is closely tied to their training data, which can include copyrighted material or private information, raising legal and ethical concerns. Additionally, LLMs face criticism for dataset contamination and internalizing biases. To address these issues, the Pre-Training Data Detection (PDD) task was proposed to identify if specific data was included in an LLM's pre-training corpus. However, existing PDD methods often rely on superficial features like prediction confidence and loss, resulting in mediocre performance. To improve this, we introduce NA-PDD, a novel algorithm analyzing differential neuron activation patterns between training and non-training data in LLMs. This is based on the observation that these data types activate different neurons during LLM inference. We also introduce CCNewsPDD, a temporally unbiased benchmark employing rigorous data transformations to ensure consistent time distributions between training and non-training data. Our experiments demonstrate that NA-PDD significantly outperforms existing methods across three benchmarks and multiple LLMs.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Beyond Static Testbeds: An Interaction-Centric Agent Simulation Platform for Dynamic Recommender Systems
poster

Beyond Static Testbeds: An Interaction-Centric Agent Simulation Platform for Dynamic Recommender Systems

EMNLP 2025

+6
Fei Jiang and 8 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved