EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Large Language Models (LLMs) are known to lack cultural representation and overall diversity in their generations, from expressing opinions to answering factual questions. To mitigate this problem, we propose multilingual prompting: a prompting method which generates several variations of a base prompt with added cultural and linguistic cues from several cultures, generates responses, and then combines the results. Building on evidence that LLMs have language-specific knowledge, multilingual prompting seeks to increase diversity by activating a broader range of cultural knowledge embedded in model training data. Through experiments across multiple models (GPT-4o, GPT-4o-mini, LLaMA 70B, and LLaMA 8B), we show that multilingual prompting consistently outperforms existing diversity-enhancing techniques such as high-temperature sampling, step-by-step recall, and personas prompting. Further analyses show that the benefits of multilingual prompting vary with language resource level and model size, and that aligning the prompting language with the cultural cues reduces hallucination about culturally-specific information.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

LyapLock: Bounded Knowledge Preservation in Sequential Large Language Model Editing
poster

LyapLock: Bounded Knowledge Preservation in Sequential Large Language Model Editing

EMNLP 2025

+2
Jizhong Han and 4 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved