EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Understanding the prevalence of misinformation in health topics online can inform public health policies and interventions. However, measuring such misinformation at scale remains a challenge, particularly for high-stakes but understudied topics like opioid-use disorder (OUD)—a leading cause of death in the U.S. We present the first large-scale study of OUD-related myths on YouTube, a widely-used platform for health information. With clinical experts, we validate 8 pervasive myths and release an expert-labeled video dataset. To scale labeling, we introduce MythTriage, an efficient triage pipeline that uses a lightweight model for routine cases and defers harder ones to a high-performing, but costlier, large language model (LLM). MythTriage achieves up to 0.86 macro F1-score while estimated to reduce annotation time and financial cost by over 76% compared to experts and full LLM labeling. We analyze 2.9K search results and 343K recommendations, uncovering how myths persist on YouTube and offering actionable insights for public health and platform moderation.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Demystifying optimized prompts in language models
poster

Demystifying optimized prompts in language models

EMNLP 2025

Howie Huang
Howie Huang and 2 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved