EMNLP 2025

November 05, 2025

Suzhou, China

Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.

Dialogue State Tracking (DST) is crucial for linking user intentions to appropriate services in task-oriented dialogue systems. We propose a zero-shot, scheme-only approach that tackles two main challenges: generating synthetic dialogues that balance diversity with schema alignment, and efficiently distilling knowledge from a large language model (LLM) into a smaller model. Our pipeline first creates scenarios, dialogue logic flows, and utterances via dynamic complexity prompting, eliminating reliance on handcrafted templates. We then use a two-stage distillation process to learn formalized dialogue representations and DST related chain-of-thought reasoning. This structure preserves interpretive capabilities while reducing inference overhead. Experiments on the MultiWOZ benchmark show that our method achieves state-of-the-art performance under zero-shot, scheme-only situation and generalizes effectively to few-shot scenarios, offering a practical and scalable solution for domains lacking real data.

Downloads

SlidesPaperTranscript English (automatic)

Next from EMNLP 2025

Beyond the Surface: Measuring Self-Preference in LLM Judgments
poster

Beyond the Surface: Measuring Self-Preference in LLM Judgments

EMNLP 2025

+2
Zhi-Yuan Chen and 4 other authors

05 November 2025

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Presentations
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2025 Underline - All rights reserved