Would you like to see your presentation here, made available to a global audience of researchers?
Add your own presentation or have us affordably record your next conference.
As Large Language Models (LLMs) increasingly integrate into everyday workflows, where users shape outcomes through multi-turn collaboration, a critical question emerges: do users with different personality traits systematically prefer certain LLMs over others? We conducted a study with 32 participants evenly distributed across four Keirsey personality types, evaluating their interactions with GPT-4 and Claude 3.5 across four collaborative tasks: data analysis, creative writing, information retrieval, and writing assistance. Results revealed significant personality-driven preferences: Rationals strongly preferred GPT-4, particularly for goal-oriented tasks, while Idealists favored Claude 3.5, especially for creative and analytical tasks. Other personality types showed task-dependent preferences. Sentiment analysis of qualitative feedback confirmed these patterns. Notably, aggregate helpfulness ratings were similar across models, showing how personality-based analysis reveals LLM differences that traditional evaluations miss.