Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background

workshop paper

ACL 2024

August 16, 2024

Bangkok, Thailand

From 'Showgirls' to 'Performers': Fine-tuning with Gender-inclusive Language for Bias Reduction in LLMs

keywords:

fine-tuning llms

gender-inclusive language

gender bias

Gender bias is not only prevalent in Large Language Models (LLMs) and their training data, but also firmly ingrained into the structural aspects of language itself. Therefore, adapting linguistic structures within LLM training data to promote gender-inclusivity can make gender representations within the model more inclusive. The focus of our work are gender-exclusive affixes in English, such as in 'show-girl' or 'man-cave', which can perpetuate gender stereotypes and binary conceptions of gender. We use an LLM training dataset to compile a catalogue of 692 gender-exclusive terms along with gender-neutral variants and from this, develop a gender-inclusive fine-tuning dataset, the 'Tiny Heap'. Fine-tuning three different LLMs with this dataset, we observe an overall reduction in gender-stereotyping tendencies across the models. Our approach provides a practical method for enhancing gender inclusivity in LLM training data and contributes to incorporating queer-feminist linguistic activism in bias mitigation research in NLP.

Next from ACL 2024

Sociodemographic Bias in Language Models: A Survey and Forward Path
workshop paper

Sociodemographic Bias in Language Models: A Survey and Forward Path

ACL 2024

Vipul Gupta

16 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved