Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/ysjd-c549

workshop paper

ACL 2024

August 16, 2024

Bangkok, Thailand

Gender Bias in Turkish Word Embeddings: A Comprehensive Study of Syntax, Semantics and Morphology Across Domains

keywords:

turkish morphology

turkish word embeddings

turkish gender bias

turkish nlp

Gender bias in word representations has emerged as a prominent research area in recent years. While numerous studies have focused on measuring and addressing bias in English word embeddings, research on the Turkish language remains limited. This work aims to bridge this gap by conducting a comprehensive evaluation of gender bias in Turkish word embeddings, considering the dimensions of syntax, semantics, and morphology. We employ subword-based static word vectors trained on three distinct domains: web crawl, academical text, and medical text. Through the analysis of gender-associated words in each domain, we not only uncover gender bias but also gain insights into the unique characteristics of these domains. Additionally, we explore the influence of Turkish suffixes on word gender, providing a novel perspective on gender bias. Our findings reveal the pervasive nature of gender biases across various aspects of the Turkish language, including word frequency, semantics, parts-of-speech, and even the smallest linguistic unit - suffixes. Notably, we demonstrate that the majority of noun and verb lemmas, as well as adverbs and adjectives, exhibit masculine gendering in the general-purpose written language. This study is the first of its kind to offer a comprehensive examination of gender bias in the Turkish language.

Downloads

Transcript English (automatic)

Next from ACL 2024

Disagreeable, Slovenly, Honest and Un-named Women? Investigating Gender Bias in English Educational Resources by Extending Existing Gender Bias Taxonomies
workshop paper

Disagreeable, Slovenly, Honest and Un-named Women? Investigating Gender Bias in English Educational Resources by Extending Existing Gender Bias Taxonomies

ACL 2024

+1
Haotian Zhu and 3 other authors

16 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved