Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/kh1k-yr41

workshop paper

ACL 2024

August 15, 2024

Bangkok, Thailand

Evaluating Large Language Models on Social Signal Sensitivity: An Appraisal Theory Approach

keywords:

social signals

llm evaluations

appraisal theory

We present a framework to assess the sensitivity of Large Language Models (LLMs) to textually embedded social signals using an Appraisal Theory perspective. We report on an experiment that uses prompts encoding three dimensions of social signals: Affect, Judgment, and Appreciation. In response to the prompt, an LLM generates both an analysis (Insight) and a conversational Response, which are analyzed in terms of sensitivity to the signals. We quantitatively evaluate the output text through topical analysis of the Insight and predicted social intelligence scores of the Response in terms of empathy and emotional polarity. Key findings show that LLMs are more sensitive to positive signals. The personas impact Responses but not the Insight. We discuss how our framework can be extended to a broader set of social signals, personas, and scenarios to evaluate LLM behaviors under various conditions.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Offline RLHF Methods Need More Accurate Supervision Signals
workshop paper

Offline RLHF Methods Need More Accurate Supervision Signals

ACL 2024

+3Fei TanShiqi Wang
Shiqi Wang and 5 other authors

15 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved