Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/fkp4-ag57

workshop paper

ACL 2024

August 16, 2024

Bangkok, Thailand

Simulating Expert Discussions with Multi-agent for Enhanced Scientific Problem Solving

keywords:

simulating expert discussions

scientific problem solving

multi-agent

large language models

Large Language Models (LLMs) have shown remarkable potential across various domains, yet their application in addressing complex scientific problems remains a formidable challenge. This paper presents a novel methodology to augment the problem-solving capabilities of LLMs by assigning them roles as domain-specific experts. By simulating a panel of experts, each LLM is tasked with delivering professional and cautious responses to scientific inquiries. Our approach involves querying multiple LLMs and assessing the consistency of their responses. High agreement among the LLMs suggests greater confidence in the proposed solution, whereas discrepancies prompt a collaborative discussion among the LLMs to reach a consensus. This method emulates real-world scientific problem-solving processes, fostering a more reliable and robust mechanism for LLMs to tackle scientific questions. Our experimental results show that assigning roles to multiple LLMs as domain-specific experts significantly improves their accuracy and reliability in solving scientific problems. This framework has the potential to advance the application of AI in scientific research, enhancing its effectiveness and trustworthiness.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Guiding Large Language Models via External Attention Prompting for Scientific Extreme Summarization
workshop paper

Guiding Large Language Models via External Attention Prompting for Scientific Extreme Summarization

ACL 2024

Yuan Chang and 1 other author

16 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved