Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/3mw8-6s97

workshop paper

ACL 2024

August 15, 2024

Bangkok, Thailand

Large language models fail to derive atypicality inferences in a human-like manner

keywords:

pragmatics; informational redun- dancy; human-like reasoning; large language models

Recent studies have claimed that large language models (LLMs) are capable of drawing pragmatic inferences (Qiu et al., 2023; Hu et al., 2022; Barattieri di San Pietro et al., 2023). The present paper sets out to test LLM's abilities on atypicality inferences, a type of pragmatic inference that is triggered through informational redundancy. We test several state-of-the-art LLMs in a zero-shot setting and find that LLMs fail to systematically fail to derive atypicality inferences. Our robustness analysis indicates that when inferences are seemingly derived in a few-shot settings, these results can be attributed to shallow pattern matching and not pragmatic inferencing. We also analyse the performance of the LLMs at the different derivation steps required for drawing atypicality inferences – our results show that models have access to script knowledge and can use it to identify redundancies and accommodate the atypicality inference. The failure instead seems to stem from not reacting to the subtle maxim of quantity violations introduced by the informationally redundant utterances.

Downloads

SlidesPaperTranscript English (automatic)

Next from ACL 2024

Structural Similarities Between Language Models and Neural Response Measurements
workshop paper

Structural Similarities Between Language Models and Neural Response Measurements

ACL 2024

Antonia Karamolegkou
Antonia Karamolegkou

15 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved