Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background

workshop paper

ACL 2024

August 16, 2024

Bangkok, Thailand

Gla-AI4BioMed at RRG24: Visual Instruction-tuned Adaptation for Radiology Report Generation

keywords:

biomedical radiology reports generation

This paper introduces a radiology-focused visual language model designed to generate radiology reports from chest X-rays. Building on previous findings that large language models can acquire multimodal capabilities when aligned with pretrained vision encoders, we demonstrate similar potential with chest X-ray images. The model combines an image encoder (CLIP) with a fine-tuned large language model (LLM) based on the Vicuna-7B architecture. The training process involves a two-stage approach: initial alignment of chest X-ray features with the LLM, followed by fine-tuning for radiology report generation. The study highlights the importance of generating both FINDINGS and IMPRESSIONS sections in radiology reports and evaluates the model's performance using various metrics, achieving notable accuracy in generating high-quality medical reports. The research also addresses the need for domain-specific fine-tuning to capture the intricate details necessary for accurate medical interpretations and reports.

Next from ACL 2024

Natural Language Can Facilitate Sim2Real Transfer
workshop paper

Natural Language Can Facilitate Sim2Real Transfer

ACL 2024

+1
Albert Yu and 3 other authors

16 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved