Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/ya0p-0t45

workshop paper

ACL 2024

August 16, 2024

Bangkok, Thailand

Optimizing Multimodal Large Language Models for Detection of Alcohol Advertisements via Adaptive Prompting

keywords:

multimodal large language model

prompt engineering

genetic algorithm

Adolescents exposed to advertisements promoting addictive substances exhibit a higher likelihood of subsequent substance use. The predominant source for youth exposure to such advertisements is through online content accessed via smartphones. Detecting these advertisements is crucial for establishing and maintaining a safer online environment for young people. In our study, we utilized Multimodal Large Language Models (MLLMs) to identify addictive substance advertisements in digital media. The performance of MLLMs depends on the quality of the prompt used to instruct the model. To optimize our prompts, an adaptive prompt engineering approach was implemented, leveraging a genetic algorithm to refine and enhance the prompts. To evaluate the model's performance, we augmented the RICO dataset, consisting of Android user interface screenshots, by superimposing alcohol ads onto them. Our results indicate that the MLLM can detect advertisements promoting alcohol with a 0.94 accuracy and a 0.94 F1 score.

Downloads

Transcript English (automatic)

Next from ACL 2024

KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques
workshop paper

KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques

ACL 2024

RUI YANG

16 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved