Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background

workshop paper

ACL 2024

August 15, 2024

Bangkok, Thailand

Improving Word Usage Graphs with Edge Induction

keywords:

edge induction

wugs

word sense induction

graph clustering

This paper investigates edge induction as a method for augmenting Word Usage Graphs, in which word usages (nodes) are connected through scores (edges) representing semantic relatedness. Clustering (densely) annotated WUGs can be used as a way to find senses of a word without relying on traditional word sense annotation. However, annotating all or a majority of pairs of usages is typically infeasible, resulting in sparse graphs and, likely, lower quality senses. In this paper, we ask if filling out WUGs with edges predicted from the human annotated edges improves the eventual clusters. We experiment with edge induction models that use structural features of the existing sparse graph, as well as those that exploit textual (distributional) features of the usages. We find that in both cases, inducing edges prior to clustering improves correlation with human sense-usage annotation across three different clustering algorithms and languages.

Next from ACL 2024

TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics
workshop paper

TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics

ACL 2024

Kairit Sirts
Aleksei Dorkin and 1 other author

15 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved