Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

On Improving Repository-Level Code QA for Large Language Models

keywords:

spyderide

code q&a

repository-level q&a

mbpp

humaneval

qlora

sft

llm-as-a-judge

self-alignment

rag

llm

fine-tuning

Large Language Models (LLMs) such as ChatGPT, GitHub Copilot, Llama, or Mistral assist programmers as copilots and knowledge sources to make the coding process faster and more efficient. This paper aims to improve the copilot performance by implementing different self-alignment processes and retrieval-augmented generation (RAG) pipelines, as well as their combination. To test the effectiveness of all approaches, we create a dataset and apply a model-based evaluation, using LLM as a judge. It is designed to check the model's abilities to understand the source code semantics, the dependency between files, and the overall meta-information about the repository. We also compare our approach with other existing solutions, e.g. ChatGPT-3.5, and evaluate on the existing benchmarks. Code and dataset are available online (https://anonymous.4open.science/r/ma_llm-382D).

Next from ACL 2024

Compromesso! Italian Many-Shot Jailbreaks undermine the safety of Large Language Models
poster

Compromesso! Italian Many-Shot Jailbreaks undermine the safety of Large Language Models

ACL 2024

Dirk Hovy
Fabio Pernisi and 2 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved