Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

On the Interpretability of Deep Learning Models for Collaborative Argumentation Analysis in Classrooms

keywords:

collaborative argumentation

trust

explainable ai

Collaborative argumentation holds significant potential for enhancing students' learning outcomes within classroom settings. Consequently, researchers have explored the application of artificial intelligence (AI) to automatically analyze argumentation in these contexts. Despite the remarkable performance of deep learning models in this task, their lack of interpretability poses a critical challenge, leading to teachers' skepticism and limited utilization. To cultivate trust among teachers, this PhD thesis proposal aims to leverage explainable AI techniques to provide explanations for these deep learning models. Specifically, the study develops two deep learning models for automated analysis of argument moves (claim, evidence, and warrant) and specificity levels (low, medium, and high) within collaborative argumentation. To address the interpretability issue, four explainable AI methods are proposed: gradient sensitivity, gradient input, integrated gradient, and LIME. Computational experiments demonstrate the efficacy of these methods in elucidating model predictions by computing word contributions, with LIME delivering exceptional performance. Moreover, a quasi-experiment is designed to evaluate the impact of model explanations on user trust and knowledge, serving as a future study of this PhD proposal. By tackling the challenges of interpretability and trust, this PhD thesis proposal aims to contribute to fostering user trust in AI and facilitating the practical implementation of AI in educational contexts.

Next from ACL 2024

Document Alignment based on Overlapping Fixed-Length Segments
poster

Document Alignment based on Overlapping Fixed-Length Segments

ACL 2024

Takehito UtsuroMasaaki Nagata
Xiaotian Wang and 2 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved