Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/b36x-te85

poster

ACL 2024

August 14, 2024

Bangkok, Thailand

ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language Models

keywords:

training data generation

named entity extraction

large language models

few-shot learning

Although Large Language Models (LLMs) exhibit remarkable adaptability across domains, these models often fall short in structured knowledge extraction tasks such as named entity recognition (NER). This paper explores an innovative, cost-efficient strategy to harness LLMs with modest NER capabilities for producing superior NER datasets. Our approach diverges from the basic class-conditional prompts by instructing LLMs to self-reflect on the specific domain, thereby generating domain-relevant attributes (such as category and emotions for movie reviews), which are utilized for creating attribute-rich training data. Furthermore, we preemptively generate entity terms and then develop NER context data around these entities, effectively bypassing the LLMs' challenges with complex structures. Our experiments across both general and niche domains reveal significant performance enhancements over conventional data generation methods while being more cost-effective than existing alternatives.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

MATTER: Memory-Augmented Transformer Using Heterogeneous Knowledge Sources
poster

MATTER: Memory-Augmented Transformer Using Heterogeneous Knowledge Sources

ACL 2024

+1Dongkyu Lee
Dongkyu Lee and 3 other authors

14 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved