Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/vcbp-8380

poster

ACL 2024

August 14, 2024

Bangkok, Thailand

Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning

keywords:

logic-driven data augmentation

large language model

contrastive learning

logical reasoning

abstract meaning representation

Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard\footnote{\url{https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347}}. The source code and data are publicly available\footnote{\href{https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning}{AMR-LDA GitHub Repository}}

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

ViHateT5: Enhancing Hate Speech Detection in Vietnamese With a Unified Text-to-Text Transformer Model
poster

ViHateT5: Enhancing Hate Speech Detection in Vietnamese With a Unified Text-to-Text Transformer Model

ACL 2024

Luan Thanh Nguyen

14 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved