Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/kkxn-xx13

poster

ACL 2024

August 14, 2024

Bangkok, Thailand

Can You Learn Semantics Through Next-Word Prediction? The Case of Entailment

keywords:

distributional semantics

entailment

language models

Do LMs infer the semantics of text from co-occurrence patterns in their training data? Merrill et al. (2022) argue that, in theory, sentence co-occurrence probabilities predicted by an optimal LM should reflect the entailment relationship of the constituent sentences, but it is unclear whether probabilities predicted by neural LMs encode entailment in this way because of strong assumptions made by Merrill et al. (namely, that humans always avoid redundancy). In this work, we investigate whether their theory can be used to decode entailment relations from neural LMs. We find that a test similar to theirs can decode entailment relations between natural sentences, well above random chance, though not perfectly, across many datasets and LMs. This suggests LMs implicitly model aspects of semantics to predict semantic effects on sentence co-occurrence patterns. However, we find the test that predicts entailment in practice works in the opposite direction to the theoretical test. We thus revisit the assumptions underlying the original test, finding its derivation did not adequately account for redundancy in human-written text. We argue that better accounting for redundancy related to explanations might derive the observed flipped test and, more generally, improve computational models of speakers in linguistics.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Simulated Misinformation Susceptibility (SMISTS): Enhancing Misinformation Research with Large Language Model Simulations
poster

Simulated Misinformation Susceptibility (SMISTS): Enhancing Misinformation Research with Large Language Model Simulations

ACL 2024

+3Weicheng Ma
Weicheng Ma and 5 other authors

14 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved