Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/1rr6-wy31

poster

ACL 2024

August 22, 2024

Bangkok, Thailand

SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with Tunable Memory Budget

keywords:

mixture of expert

large language model

efficient

Mixture of experts (MoE) is a popular technique to improve capacity of Large Language Models (LLMs) with conditionally-activated parallel experts. However, serving MoE models on memory-constrained devices is challenging due to the large parameter size. Typical solutions such as memory swapping or expert pruning may lead to significantly higher latency or severe accuracy loss. In this paper, we introduce SwapMoE, a framework for efficient serving of MoE-based large language models with tunable memory budgets. The main idea of SwapMoE is to keep a small dynamic set of important experts, namely Virtual Experts, in the main memory for inference, while seamlessly maintaining how the Virtual Experts map to the actual experts. Experiments have shown that SwapMoE can reduce the memory footprint while maintaining reasonable accuracy. For example, on text summarization tasks with Switch Transformer, SwapMoE can reduce the memory consumption from 14.2 GiB to 4.7 GiB, together with 50\% latency reduction and a slight Rouge-2 score drop of 0.041.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Consistency Training by Synthetic Question Generation for Conversational Question Answering
poster

Consistency Training by Synthetic Question Generation for Conversational Question Answering

ACL 2024

Hamed Hematian Hemati and 1 other author

22 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved