Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/f7jj-x863

poster

ACL 2024

August 14, 2024

Bangkok, Thailand

AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning

keywords:

self-planning

self-instruct

division-of-labor

automatic agent learning

question answering

Language agents have achieved considerable performance on various complex question-answering tasks by planning with external tools. Despite the incessant exploration in this field, existing language agent systems still struggle with costly, non-reproducible data reliance and face the challenge of compelling a single model for multiple functions. To this end, we introduce AutoAct, an automatic agent learning framework for QA that does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models (e.g., GPT-4). Given limited data with a tool library, AutoAct first automatically synthesizes planning trajectories without any assistance from humans or strong closed-source models. Then, AutoAct leverages a division-of-labor strategy to automatically differentiate based on the target task information and synthesized trajectories, producing a sub-agent group to complete the task. We conduct comprehensive experiments with different LLMs, which demonstrates that AutoAct yields better or parallel performance compared to various strong baselines. Further analysis demonstrates the effectiveness of the division-of-labor strategy, with the trajectory quality generated by AutoAct generally outperforming that of others.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning
poster

MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning

ACL 2024

+5Zhumin ChenPengjie Ren
Pengjie Ren and 7 other authors

14 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved