Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/581r-wp89

poster

ACL 2024

August 22, 2024

Bangkok, Thailand

Co-training for Low Resource Scientific Natural Language Inference

keywords:

scientific nli

co-training

semi-supervised learning

Scientific Natural Language Inference (NLI) is the task of predicting the semantic relation between a pair of sentences extracted from research articles. The automatic annotation method based on distant supervision for the training set of SciNLI, the first and most popular dataset for this task, results in label noise which inevitably degenerates the performance of classifiers. In this paper, we propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels, reflective of the manner they are used in the subsequent training epochs. That is, unlike the existing semi-supervised learning (SSL) approaches, we consider the historical behavior of the classifiers to evaluate the quality of the automatically annotated labels. Furthermore, by assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data, while ensuring that the noisy labels have a minimal impact on model training. The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines. We make our code and data available on Github.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Metaphor Understanding Challenge Dataset for LLMs
poster

Metaphor Understanding Challenge Dataset for LLMs

ACL 2024

+1Rochelle Choenni
Xiaoyu Tong and 3 other authors

22 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved