Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/skgm-sn14

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

Hide and Seek in Noise Labels: Noise-Robust Collaborative Active Learning with LLMs-Powered Assistance

keywords:

noisy label learning

text classification

active learning

Learning from noisy labels (LNL) is a challenge that arises in many real-world scenarios where collected training data can contain incorrect or corrupted labels. Most existing solutions identify noisy labels and adopt active learning to query human experts on them for denoising. In the era of large language models (LLMs), although we can reduce the human effort to improve these methods, their performances are still subject to accurately separating the clean and noisy samples from noisy data. In this paper, we propose an innovative collaborative learning framework NoiseAL based on active learning to combine LLMs and small models (SMs) for learning from noisy labels. During collaborative training, we first adopt two SMs to form a co-prediction network and propose a dynamic-enhanced threshold strategy to divide the noisy data into different subsets, then select the clean and noisy samples from these subsets to feed the active annotator LLMs to rectify noisy samples. Finally, we employ different optimization objectives to conquer subsets with different degrees of label noises. Extensive experiments on synthetic and real-world noise datasets further demonstrate the superiority of our framework over state-of-the-art baselines.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

ProtT3: Protein-to-Text Generation for Text-based Protein Understanding
poster

ProtT3: Protein-to-Text Generation for Text-based Protein Understanding

ACL 2024

+4Hao Fei
Zhiyuan Liu and 6 other authors

14 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved