Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/xk5b-pt11

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

MULFE: A Multi-Level Benchmark for Free Text Model Editing

keywords:

knowledge editing

model editing

benchmark

Adjusting the outdated behaviors of large langugae models (LLMs) after deployment remains a significant challenge. It motivates the model editing research, which is however mainly explored in a restricted task form with triple-based edit requests. Recent works have initiated a transition to a more practical and unified editing task that takes free-form text as edit requests. However, there are gaps in nuanced benchmark designs and re-evaluation of existing methods. To bridge the gaps, we introduce a multi-level benchmark for free text model editing (MULFE). The benchmark categorizes probe queries into three levels of generalization, ranging from basic literal memory to deeper understanding and reasoning. Based on the benchmark, we conduct extensive experiments across various base models, edit sizes, and editing methods, including adaptations of mainstream locate-and-edit and hypernetwork methods. The results highlight the inconsistent behaviors of edited models on different generalization levels. Higher-level generalization remains a significant challenge. Based on the findings, we propose SIDE, a simple yet effective method based on in-context distillation to enhance the generalization performance. The benchmark dataset and evaluation scripts are publicly available at http://github.com/wchrepo/mulfe.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

LLM-Rubric: A Multidimensional, Calibrated Approach to Automated Evaluation of Natural Language Texts
poster

LLM-Rubric: A Multidimensional, Calibrated Approach to Automated Evaluation of Natural Language Texts

ACL 2024

+2Helia Hashemi
Helia Hashemi and 4 other authors

13 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved