Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/v53k-4e29

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems

keywords:

olympiad-leval

math

physics

multimodal

benchmark

Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97\% on OlympiadBench, with a mere 10.74\% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at \url{https://github.com/OpenBMB/OlympiadBench}

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

TimeArena: Shaping Efficient Multitasking Language Agents in a Time-Aware Simulation
poster

TimeArena: Shaping Efficient Multitasking Language Agents in a Time-Aware Simulation

ACL 2024

+3Jiangjie Chen
Yikai Zhang and 5 other authors

13 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved