Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/cvhx-hp26

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

The Critique of Critique

keywords:

critique evaluation

refinement

large language models

Critique, as a natural language description for assessing the quality of model-generated content, has played a vital role in the training, evaluation, and refinement of LLMs. However, a systematic method to evaluate the quality of critique is lacking. In this paper, we pioneer the critique of critique, termed $\textbf{MetaCritique}$, which builds specific quantification criteria. To achieve a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique aggregates each AIU's judgment for the overall score. Moreover, MetaCritique delivers a natural language rationale for the intricate reasoning within each judgment. Lastly, we construct a meta-evaluation dataset covering 4 tasks across 16 public datasets involving human-written and LLM-generated critiques. Experiments demonstrate that MetaCritique can achieve near-human performance. Our study can facilitate future research in LLM critiques based on our following observations and released resources: (1) superior critiques judged by MetaCritique can lead to better refinements, indicating that it can potentially enhance the alignment of existing LLMs; (2) the leaderboard of critique models reveals that open-source critique models commonly suffer from factuality issues; (3) relevant code and data are publicly available at https://anonymous.4open.science/r/MetaCritique-ARR/ to support deeper exploration; (4) an $\textbf{API}$ at PyPI with the usage documentation in Appendix C allows users to assess the critique conveniently.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

P4: Plug-and-Play Discrete Prompting for Large Language Models Personalization
poster

P4: Plug-and-Play Discrete Prompting for Large Language Models Personalization

ACL 2024

+3
Yuansen Zhang and 5 other authors

13 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved