Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/9r2j-z435

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

Exploring Defeasibility in Causal Reasoning

keywords:

defeater

supporter

defeasibility

causal strength

causal reasoning

Defeasibility in causal reasoning implies that the causal relationship between cause and effect can be strengthened or weakened. Namely, the causal strength between cause and effect should increase or decrease with the incorporation of strengthening arguments (supporters) or weakening arguments (defeaters), respectively. However, existing works ignore defeasibility in causal reasoning and fail to evaluate existing causal strength metrics in defeasible settings. In this work, we present $\delta$-CAUSAL, the first benchmark dataset for studying defeasibility in causal reasoning. $\delta$-CAUSAL includes around 11K events spanning ten domains, featuring defeasible causality pairs, namely, cause-effect pairs accompanied by supporters and defeaters. We further show that current causal strength metrics fail to reflect the change of causal strength with the incorporation of supporters or defeaters in $\delta$-CAUSAL. To this end, we propose CESAR (Causal Embedding aSsociation with Attention Rating), a metric that measures causal strength based on token-level causal relationships. CESAR achieves a significant 69.7% relative improvement over existing metrics, increasing from 47.2% to 80.1% in capturing the causal strength change brought by supporters and defeaters. We further demonstrate even Large Language Models (LLMs) like GPT-3.5 still lag 4.5 and 10.7 points behind humans in generating supporters and defeaters, emphasizing the challenge posed by $\delta$-CAUSAL.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

A multi-level multi-label text classification dataset of 19th century Ottoman and Russian literary and critical texts
poster

A multi-level multi-label text classification dataset of 19th century Ottoman and Russian literary and critical texts

ACL 2024

+1
Gokcen Gokceoglu and 3 other authors

13 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved