Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/y3t6-na65

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

SPIN: Sparsifying and Integrating Internal Neurons in Large Language Models for Text Classification

keywords:

feature sparsification

mechanistic interpretability

large language model

text classification

Among the many tasks that Large Language Models (LLMs) have revolutionized is text classification. Current text classification paradigms, however, rely solely on the output of the final layer in the LLM, with the rich information contained in internal neurons largely untapped. In this study, we present SPIN: a model-agnostic framework that sparsifies and integrates internal neurons of intermediate layers of LLMs for text classification. Specifically, SPIN sparsifies internal neurons by linear probing-based salient neuron selection layer by layer, avoiding noise from unrelated neurons and ensuring efficiency. The cross-layer salient neurons are then integrated to serve as multi-layered features for the classification head. Extensive experimental results show our proposed SPIN significantly improves text classification accuracy, efficiency, and interpretability.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Disentangling Length from Quality in Direct Preference Optimization
poster

Disentangling Length from Quality in Direct Preference Optimization

ACL 2024

+1Stefano Ermon
Ryan Park and 3 other authors

13 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved