Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/hy3g-5339

poster

ACL 2024

August 22, 2024

Bangkok, Thailand

End-to-end Learning of Logical Rules for Enhancing Document-level Relation Extraction

keywords:

end-to-end rule learning

rule-based framework

document-level relation extraction

Document-level relation extraction (DocRE) aims to extract relations between entities in a whole document. One of the pivotal challenges of DocRE is to capture the intricate interdependencies between relations of entity pairs. Previous methods have shown that logical rules can explicitly help capture such interdependencies. These methods either learn logical rules to refine the output of a trained DocRE model, or first learn logical rules from annotated data and then inject the learnt rules into a DocRE model using an auxiliary training objective. However, these learning pipelines may suffer from the issue of error propagation. To mitigate this issue, we propose \emph{Joint Modeling Relation extraction and Logical rules} or \emph{JMRL} for short, a novel rule-based framework that jointly learns both a DocRE model and logical rules in an end-to-end fashion. Specifically, we parameterize a rule reasoning module in JMRL to simulate the inference of logical rules, thereby explicitly modeling the reasoning process. We also introduce an auxiliary loss and a residual connection mechanism in JMRL to better reconcile the DocRE model and the rule reasoning module. Experimental results on four benchmark datasets demonstrate that our proposed JMRL framework is consistently superior to existing rule-based frameworks, improving five baseline models for DocRE by a significant margin.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Order-Agnostic Data Augmentation for Few-Shot Named Entity Recognition
poster

Order-Agnostic Data Augmentation for Few-Shot Named Entity Recognition

ACL 2024

+2
Huiming Wang and 4 other authors

22 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved