Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/ymkv-4x76

poster

ACL 2024

August 13, 2024

Bangkok, Thailand

An Effective Pronunciation Assessment Approach Leveraging Hierarchical Transformers and Pre-training Strategies

keywords:

hierarchical neural modeling

automatic pronunciation assessment

computer-assisted language learning

Automatic pronunciation assessment (APA) manages to quantify a second language (L2) learner's pronunciation proficiency in a target language by providing fine-grained feedback with multiple pronunciation aspect scores at various linguistic levels. Most existing efforts on APA typically parallelize the modeling process, namely predicting multiple aspect scores across various linguistic levels simultaneously. This inevitably makes both the hierarchy of linguistic units and the relatedness among the pronunciation aspects sidelined. Recognizing such a limitation, we in this paper first introduce HierTFR, a hierarchal APA method that jointly models the intrinsic structures of an utterance while considering the relatedness among the pronunciation aspects. We also propose a correlation-aware regularizer to strengthen the connection between the estimated scores and the human annotations. Furthermore, novel pre-training strategies tailored for different linguistic levels are put forward so as to facilitate better model initialization. An extensive set of empirical experiments conducted on the speechocean762 benchmark dataset suggest the feasibility and effectiveness of our approach in relation to several competitive baselines.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension
poster

AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension

ACL 2024

+8
Qian Yang and 10 other authors

13 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved