Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/e5v7-ak78

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

Perturbed examples reveal invariances shared by language models

keywords:

shared invariance

linguistic capabilities

behavioral comparison

The rapid growth in natural language processing (NLP) research has led to numerous new models, outpacing our understanding of how they compare to established ones. One major reason for this difficulty is saturating benchmarks, which may not well reflect differences in model performance in the wild. In this work, we introduce a novel framework to compare two NLP models by revealing their shared invariance to interpretable input perturbations targeting a specific linguistic capability. Via experiments on models from the same and different architecture families, this framework offers insights about how changes in models (e.g., distillation, size increase) affect linguistic capabilities. Furthermore, our framework enables evaluation of invariances between commercial black-box models (e.g., InstructGPT family) and models that are better understood (e.g., GPT-2). Across experiments, we observe that large language models share many invariances encoded by models of various sizes, whereas the invariances by large models are only shared by other large models. Possessing a wide variety of invariances may be key to the recent successes of large language models, and our framework can shed light on the types of invariances retained or emerging in new models. We make the code publicly available.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Investigating the Impact of Model Instability on Explanations and Uncertainty
poster

Investigating the Impact of Model Instability on Explanations and Uncertainty

ACL 2024

Isabelle Augenstein
Sara Vera Marjanovic and 2 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved