Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/raep-r867

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

Characterizing Large Language Models as Rationalizers of Knowledge-intensive Tasks

keywords:

trust and reliability

explaianble nlp

llms

Large language models (LLMs) are proficient at generating fluent text with minimal task-specific supervision. However, their ability to generate rationales for knowledge-intensive tasks (KITs) remains under-explored. Generating rationales for KIT solutions, such as commonsense multiple-choice QA, requires external knowledge to support predictions and refute alternate options. In this work, we consider the task of generating retrieval-augmented rationalization of KIT model predictions via external knowledge guidance within a few-shot setting. Surprisingly, crowd-workers preferred LLM-generated rationales over existing crowd-sourced rationales, generated in a similar knowledge-guided setting, on aspects such as factuality, sufficiency, and convincingness. However, fine-grained evaluation of such rationales highlights the need for further improvements in conciseness, novelty, and domain invariance. Additionally, through an expert-sourced study evaluating the reliability of the rationales, we demonstrate that humans' trust in LLM-generated rationales erodes when communicated faithfully, i.e., without taking model prediction accuracy into account. We find that even instrumenting simple guardrails can be effective for reliable rationalization.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Challenging Large Language Models with New Tasks: A Study on their Adaptability and Robustness
poster

Challenging Large Language Models with New Tasks: A Study on their Adaptability and Robustness

ACL 2024

+2Yuanhe TianYan Song
CHENXI LI and 4 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved