Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/1d2a-n028

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models

keywords:

large vision-language models

trustworthy

hallucination

Object hallucination has been an Achilles' heel which hinders the broader applications of large vision-language models (LVLMs). Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image. To mitigate the object hallucinations, instruction tuning and external model-based detection methods have been proposed, which either require large-scare computational resources or depend on the detection result of external models. However, there remains an under-explored field to utilize the LVLM itself to alleviate object hallucinations. In this work, we adopt the intuition that the LVLM tends to respond logically consistently for existent objects but inconsistently for hallucinated objects. Therefore, we propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely $\textbf{LogicCheckGPT}$. In specific, we devise logical consistency probing to raise questions with logical correlations, inquiring about attributes from objects and vice versa. Whether their responses can form a logical closed loop serves as an indicator of object hallucination. As a plug-and-play method, it can be seamlessly applied to all existing LVLMs. Comprehensive experiments conducted on three benchmarks across four LVLMs have demonstrated significant improvements brought by our method, indicating its effectiveness and generality.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

LLaST: Improved End-to-end Speech Translation System Leveraged by Large Language Models
poster

LLaST: Improved End-to-end Speech Translation System Leveraged by Large Language Models

ACL 2024

+2
Xi Chen and 4 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved