
Premium content
Access to this content requires a subscription. You must be a premium user to view this content.
Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
VIDEO DOI: https://doi.org/10.48448/qxdx-1b51
poster
Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models
keywords:
llm
prompt
sentiment analysis
syntax
multilingual
This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages.