Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/nc4z-d453

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

Semantic Skill Grounding for Embodied Instruction-Following in Cross-Domain Environments

keywords:

llm

multi-modality

robotics

In embodied instruction-following (EIF), the integration of pretrained language models (LMs) as task planners emerges as a significant branch, where tasks are planned at the skill level by prompting LMs with pretrained skills and user instructions. However, grounding these pretrained skills in different domains remains challenging due to their intricate entanglement with the domain-specific knowledge. To address this challenge, we present a semantic skill grounding (SemGro) framework that leverages the hierarchical nature of semantic skills. SemGro recognizes the broad spectrum of these skills, ranging from short-horizon low-semantic skills that are universally applicable across domains to long-horizon rich-semantic skills that are highly specialized and tailored for particular domains. The framework employs an iterative skill decomposition approach, starting from the higher levels of semantic skill hierarchy and then moving downwards, so as to ground each planned skill to an executable level within the target domain. To do so, we use the reasoning capabilities of LMs for composing and decomposing semantic skills, as well as their multi-modal extension for assessing the skill feasibility in the target domain. Our experiments in the VirtualHome benchmark show the efficacy of SemGro in 300 cross-domain EIF scenarios.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Video-Language Understanding: A Survey from Model Architecture, Model Training, and Data Perspectives
poster

Video-Language Understanding: A Survey from Model Architecture, Model Training, and Data Perspectives

ACL 2024

+6Thong Nguyen
Thong Nguyen and 8 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved