Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/hawn-tr24

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

Bridging Word-Pair and Token-Level Metaphor Detection with Explainable Domain Mining

keywords:

explainable domain mining

core word pair

token-level metaphor detection

conceptual metaphor theory

Metaphor detection aims to identify whether a linguistic expression in text is metaphorical or literal. Most existing research tackles this problem either using word-pair or token-level information as input, and thus treats word-pair and token-level metaphor detection as distinct subtasks. Benefited from the simplified structure of word pairs, recent methods for word-pair metaphor detection can provide intermediate explainable clues for the detection results, which remains a challenging issue for token-level metaphor detection. To mitigate this issue in token-level metaphor detection and take advantage of word pairs, in this paper, we make the first attempt to bridge word-pair and token-level metaphor detection via modeling word pairs within a sentence as explainable intermediate information. As the central role of verb in metaphorical expressions, we focus on token-level verb metaphor detection and propose a novel explainable Word Pair based Domain Mining (WPDM) method. Our work is inspired by conceptual metaphor theory (CMT). We first devise an approach for conceptual domain mining utilizing semantic role mapping and resources at cognitive, commonsense and lexical levels. We then leverage the inconsistency between source and target domains for core word pair modeling to facilitate the explainability. Experiments on four datasets verify the effectiveness of our method and demonstrate its capability to provide the core word pair and corresponding conceptual domains as explainable clues for metaphor detection.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Spatially-Aware Speaker for Vision-and-Language Navigation Instruction Generation
poster

Spatially-Aware Speaker for Vision-and-Language Navigation Instruction Generation

ACL 2024

+1
Muraleekrishna Gopinathan and 3 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved