Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/2gja-vg26

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

Search-Adaptor: Embedding Customization for Information Retrieval

keywords:

customization

embedding

retrieval

Embeddings extracted by pre-trained Large Language Models (LLMs) have significant potential to improve information retrieval and search. Beyond the zero-shot setup in which they are being conventionally used, being able to take advantage of the information from the relevant query-corpus paired data can further boost the LLM capabilities. In this paper, we propose a novel method, Search-Adaptor, for customizing LLMs for information retrieval in an efficient and robust way. Search-Adaptor modifies the embeddings generated by pre-trained LLMs, and can be integrated with any LLM, including those only available via prediction APIs. On multiple English, multilingual, and multimodal retrieval datasets, we show consistent and significant performance benefits for Search-Adaptor -- e.g., more than 5% improvements for Google Embedding APIs in nDCG@10 averaged over 14 BEIR datasets.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Transferable and Efficient Non-Factual Content Detection via Probe Training with Offline Consistency Checking
poster

Transferable and Efficient Non-Factual Content Detection via Probe Training with Offline Consistency Checking

ACL 2024

+4
Xiaokang Zhang and 6 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved