Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/d81e-td36

poster

ACL 2024

August 12, 2024

Bangkok, Thailand

On the Vulnerability of Safety Alignment in Open-Access LLMs

keywords:

open-access

llms

safety

Large language models (LLMs) possess immense capabilities but are susceptible to malicious exploitation. To mitigate the risk, safety alignment is employed to align LLMs with ethical standards. However, safety-aligned LLMs may remain vulnerable to carefully crafted jailbreak attacks, but these attacks often face high rejection rates and limited harmfulness. In this paper, we expose the vulnerabilities of safety alignment in open-access LLMs, which can significantly enhance the success rate and harmfulness of jailbreak attacks. Through reverse alignment, achieved by accessing model parameters, we show the feasibility of efficiently fine-tuning LLMs to undermine their inherent safeguards. We investigate two types of reverse alignment techniques: reverse supervised fine-tuning (RSFT) and reverse preference optimization (RPO). RSFT operates by supervising the fine-tuning of LLMs to reverse their inherent values. We also explore how to prepare data needed for RSFT. RPO optimizes LLMs to enhance their preference for harmful content, reversing the models' safety alignment. Our extensive experiments reveal that open-access high-performance LLMs can be adeptly reverse-aligned to output harmful content, even in the absence of manually curated malicious datasets. Our research acts as a whistleblower for the community, emphasizing the need to pay more attention to safety of open-accessing LLMs. It also underscores the limitations of current safety alignment approaches and calls for research on robust safety alignment methods to counteract malicious fine-tuning attacks.

Downloads

SlidesTranscript English (automatic)

Next from ACL 2024

Disentangling Dialect from Social Bias via Multitask Learning to Improve Fairness
poster

Disentangling Dialect from Social Bias via Multitask Learning to Improve Fairness

ACL 2024

Henning WachsmuthMaximilian Spliethöver
Maximilian Spliethöver and 2 other authors

12 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved