Lecture image placeholder

Premium content

Access to this content requires a subscription. You must be a premium user to view this content.

Monthly subscription - $9.99Pay per view - $4.99Access through your institutionLogin with Underline account
Need help?
Contact us
Lecture placeholder background
VIDEO DOI: https://doi.org/10.48448/tj47-p392

poster

ACL 2024

August 22, 2024

Bangkok, Thailand

CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation

keywords:

critique generation

large language model

evaluation

Since the natural language processing (NLP) community started to make large language models (LLMs) act as a critic to evaluate the quality of generated texts, most of the existing works train a critique generation model on the evaluation data labeled by GPT-4's direct prompting. We observe that these models lack the ability to generate informative critiques in both pointwise grading and pairwise comparison especially without references. As a result, their generated critiques cannot provide fine-grained distinguishability on generated texts, causing unsatisfactory evaluation performance. In this paper, we propose a simple yet effective method called Eval-Instruct, which can first acquire pointwise grading critiques with pseudo references and then revise these critiques via multi-path prompting to obtain informative evaluation data in different tasks and settings, including pointwise grading and pairwise comparison with / without references. After fine-tuning on these data, the resulting model CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines and even achieve comparable evaluation performance to GPT-4 in system-level correlations of pointwise grading. We also demonstrate that our generated critiques can act as scalable feedback to further improve the generation quality of strong LLMs like ChatGPT.

Downloads

Transcript English (automatic)

Next from ACL 2024

PACIT: Unlocking the Power of Examples for Better In-Context Instruction Tuning
poster

PACIT: Unlocking the Power of Examples for Better In-Context Instruction Tuning

ACL 2024

+2Guanhua Chen
Tianci Xue and 4 other authors

22 August 2024

Stay up to date with the latest Underline news!

Select topic of interest (you can select more than one)

PRESENTATIONS

  • All Lectures
  • For Librarians
  • Resource Center
  • Free Trial
Underline Science, Inc.
1216 Broadway, 2nd Floor, New York, NY 10001, USA

© 2023 Underline - All rights reserved